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decyltrichlorosilane, CI3Si(CH2 )gCH 3 . The resulting surface displayed a

gradient of hydrophobicity (with the contact angle of water changing from 970

to 250) over a distance of 1 centimeter. When the wafer was tilted from the

horizontal plane by 150, with the hydrophobic end lower than the hydrophilic,

and a drop of water (I to 2 microliters) was placed at the hydrophobic end, the

drop moved toward the hydrophilic end with an average velocity of about 1 to 2

mm/sec. In order for the drop to move, the hysteresis in contact angle on the

surface had to be low (<10).
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A surface having a spacial gradient in its surface free energy was capable of

causing drops of water placed on it to move uphill. This motion was the result

of an imbalance in the forces due to surface tension acting on the liquid-solid

contact line on the two opposite sides ("uphill" or "downhill") of the drop.

The required gradient in surface free energy was generated on the surface of a

polished silicon wafer by exposing it to the diffusing front of a vapor of

decyltrichlorosilane, CI3Si(CH2 )gCH 3. The resulting surface displayed a

gradient of hydrophobicity (with the contact angle of water changing from 970

to 250) over a distance of I centimeter. When the wafer was tilted from the

horizontal plane by 15', with the hydrophobic end lower than the hydrophilic,

and a drop of water (I to 2 microliters) was placed at the hydrophobic end, the

d-np moved toward the hydrophilic end with an average velocity of about 1 to 2

mm/sec. In order for the drop to move, the hysteresis in contact angle on the

surface had to be low (5100).
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The motion of liquid drops on surfaces, induced by thermal gradients, has

been observed experimentally and discussed theoretically (1-4). This type of

drop motion is a consequence of the Marangoni flow within the drop that is set

up by thermal gradients. Motion of liquid driven by Marangoni flow is also

evident in the classical "tear of wine" effect (5). Evaporation of alcohol

from the liquid-solid meniscus creates a local rise of the surface tension in

the liquid, which induces a surface flow (and in turn a bulk flow) of wine on

the wall of the wine glass; the accumulating liquids return in the form of

drops. Cottington et al. reported that drops of several oils moved freely on a

stainless-steel surface when the oils contained certain types of surfactant

additives (6). The authors postulated that the nonuniform evaporation of the

surfactant resulted in a surface tension gradient in the liquid drop; this

gradient caused the drops to move. This motion appears to be another example

of the Marangoni effect.

We report a new type of drop motion that is induced entirely by a surface

chemical gradient of a solid substrate. What distinguishes the motion

described here from those reported earlier (1,2,4-6) is the fact that no

Marangoni forces act on the liquid--instead, the motion results from the

imbalance of the surface tension forces acting on the two opposite sides of the

drop edge. Figure I represents a cross section of a water drop placed on a

surface that has a spatial gradient in the surface free energy. The unbalanced

Young's force (dFy) experienced by this section of the drop is given by Eq. 1.

dFy - [(SV - ISL)A - (Tsv - tSL)B]dx (1)

Here, ySV and ISL are the surface free energies of the solid-vapor and solid-
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liquid interfaces, and dx is the thickness of the section of the drop. If 8A

and OB represent the local contact angles at points A and D, then Eq. I can be

represented as

dFy - TLV(COs 0A - cos OB)dx (2)

The surface free eneray of the liquid-vapor interface is tLV. The net force

(Fy) experienced by the drop can be obtained by integrating Eq. 2 over the

entire width of the drop. If the contact angle at point A is smaller than that

at point B, the drop will move in the direction of higher fSV. This motion has

two effects: it decreases the area of vapor-solid interface having the larger

interfacial free energy while increasing that having lower free energy, and it

increases the total area of solid-liquid interface. Both changes in free

energy, effected over a distance, constitute a force driving the drop uphill,

against the force of gravity. For a surface that exhibits high hysteresis in

contact angles, however, the receding contact angle at point B may become

smaller than the advancing contact angle at point A. Under this condition, the

drop will not move (3.7). The presence of a gradient in surface tension is

thus not, by itself, sufficient to ensure motion of liquid drops--the surface

must also have low hysteresis in contact angles and be free of defects that pin

the edge of the drop (8).

The method we used to produce gradients in chemical compositions and

surface tension on solid surfaces is a modification of the method developed

first by Elwing et al. (9). It is based on allowing the surface of a silicon

wafer to react with vapors of a volatile alkylchlorosilane by using a diffusion

controlled process. The silanization reactions reported by Elwing et al. were
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carried out in solvents and exhibited large hysteresis in contact angles (200

to 400) (10). Our work used a method that generates gradient surfaces of lower

hysteresis (60 to 80). This combination of gradient and hysteresis caused I to

2 pl drops of water to move up a 150 slope along the direction of increasing

surface free energy, with average velocities of I to 2 mm/s (IJ).

The gradient surface was prepared by allowing the vapor of

decyltrichlorosilane (Cl3Si(CH 2 )gCH 3, RSiCl3) to diffuse over a silicon wafer

(Fig. 2). A clean (2) silicon wafer was placed at a distance of 2 mm from a

solution of RSiCI3 in paraffin oil. As the silane evaporated and diffused in

the vapor phase, it generated a gradient of concentration decreasing along the

length of the wafer. The profile of this gradient was imprinted onto the

silicon wafer by reaction with its surface. The edge of the wafer closest to

the silane became hydrophobic; the farthest end remained hydrophilic. The

steepness of the gradient was a function of the time of exposure of the wafer

to the vapor of the silane. After the formation of the chemical gradient, the

wafer was placed in warm distilled water (65 IC) for I min, rinsed thoroughly

in running distilled water, and stored in distilled water at room temperature

(13).

The gradient surfaces were characterized with contact angle measurements

and ellipsometry. The typical wettability gradient produced by exposing the

wafer to vapors of RSiCl 3 for 5 min is shown in Fig. 2. The contact angles

decreased smoothly (4); the hysteresis of contact angles was about 100 on the

hydrophobic edge of the wafer and 60 to 80 for most of the gradient, but

increased abruptly at the hydrophilic end. The thickness of the alkylsiloxane

layer, obtained by ellipsometry, was about 6 A (15) at the hydrophobic end of

the gradient. This value indicates that the layer is significantly less than a
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monolayer and is disordered (16). The thickness decreased steadily at a rate

of about I A/mm up to a distance of 5 mm from the hydrophobic edge, beyond

which the estimation of thickness by ellipsometry became unreliable.

Measurements of contact angles indicated that a gradient was present up to a

distance of I cm from the hydrophobic edge.

The motion of water drops was examined by placing them on the hydrophobic

edge of the gradient surface. The uphill motion of a water drop on a gradient

surface that was inclined by 150 from the horizontal plane is shown in Fig. 3.

The speeds of the drops varied across the gradient and with the size of the

drop; average speeds of 1 to 2 mm/s were observed for I to 2 pl drops on the

steeper part of the gradient (_7). The shape of the drop shown in Fig. 3 is

that of a spherical cap. The difference of the contact angles in the advancing

and receding edges of the drop was only about 20 to 31. The effect of gravity

on the drop shape was not significant here because the radius of the drop (I to

1.5 mm) was smaller than the Laplace length (2.7 mm) (18). The near-spherical

shape of the drop appears to be a consequence of the equilibration of the

Laplace pressure inside the drop, which is consistent with the model proposed

by Brochard (3).

Water was not the only liquid that moved across such gradient surfaces;

other liquids such as glycerol and chloroform also moved. The motion of these

liquids was, however, examined by keeping the gradient surface horizontal.

Although we have not studied these factors in any detail, the speeds of

the liquid drops depended on hysteresis in contact angles, surface tension and

viscosity of the drops, drop volume, the steepness of the gradient, and the

inclination of the gradient surface. Detailed understanding of the kinetics of

drop motion on gradient surfaces should take these factors into account. The
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gradient surfaces reported here are easily prepared. They should be useful in

studying the motion of liquid drops induced by chemical gradients, and the

interplay of chemical and thermal gradients.

Notes and References

1. H. Bouasse, Capillaritd et Ph~nom~nes Superficielles (Delagrave, Paris,

1924).

2. N. 0. Young, J. S. Goldstein, M. J. Block, J. Fluid Mech. 6, 350 (1959).

3. F. Brochard, Lanqmuir 5, 432 (1989).

4. K. D. Barton and R. S. Subramanian, J. Colloid Interface Sci. 133, 211

(1989).

5. A. W. Adamson, Physical Chemistry of Surfaces (Wiley, New York, ed. 3,

1976).

6. R. L. Cottington, C. M. Murphy, C. R. Singleterry, Adv. Chem. Ser. 43, 341

(1964).

7. E. Raphael, C. R. Acad. Sci. Paris I 306, 751 (1988).

8. T. Ondarcuhu and M. Veyssie, J. Phys. I• 1, 75 (1991).

9. H. Elwing, S. Welin, A. Askendal, U. Nilsson, I. Lundstrom, J. Colloid

Interface Sci. 119, 203 (1987).

10. C.-G. Golander, Y.-S. Lin, V. Hlady, J. D. Andrade, Colloids Surf. 49, 289

(1990).

11. These values of speed are approximate and variable. The effects of drop

volumes on speeds have not been rigorously examined. Qualitatively, it was

observed that the speeds increased as the volume of the drops increased.

12. Silicon wafers were cleaned in hot piranha solution, which is a mixture of
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this solution for one-half hour. Afterward, the wafer was thoroughly

rinsed with and stored in distilled water. Before preparing the gradient

surface, the wafer was rinsed again in running distilled water and then

dried by blowing nitrogen over it.

13. We found that immersing the wafer in warm distilled water and rinsing in

pure distilled water helped to remove some of the loosely adsorbed

contamination from the surface. The gradient surface could be easily

contaminated by atmospheric impurities. The surface remained clean,

however, when kept immersed in pure distilled water.

14. Drops used to measure the advancing and receding contact angles were held

stationary on the surface of the silicon wafer by the tip of the

microsyringe used to form the drops. The contact angles were measured

under quasistatic conditions, that is, after the cessation of the movement

of the contact line. For quantitative correlation between drop velocity

and surface energy gradient, the contact angles should be measured under

dynamic conditions. These measurements are beyond the scope of our

present study.

15. The thickness gradients of the monolayers were functions of the adsorption

times and molecular weights of the silanes. We have also prepared

gradient surfaces by using CI3Si(CH 2)7CH3. After a 5-min adsorption,

nearly a close-packed monolayer (11 A thick) was formed at the hydrophobic

edge.

16. The thickness obtained by ellipsometry was an average over an area of

about 3 mm2.

17. The length (5 mm) of this gradient corresponds to what was detected by

ellipsometry, which also matched the field of view of the telescope used
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to observe the motion of water drops. While the drop moved beyond 5 mm

from the hydrophobic edge, the drop became flat and thin in the region of

weaker gradient.

18. The Laplace length (also known as the capillary length) is (LV/pg) 0"5,

where p is the density of the liquid and g is the acceleration due to

gravity.
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Captions

Fig. 1. Idealized diagram of a thin cross section of a liquid drop on a

gradient surface. While this diagram is useful for understanding the origin of

Young's driving force on a gradient surface, it does not state the problem

completely. Such a distorted drop shape would imply the presence of a Laplace

pressure gradient within the drop. The pressure inside the drop would equalize

and the drop would assume the shape of a spherical cap. The value of the

dynamic contact angle would be intermediate of 8A and 0B.

Fig. 2. Gradient in wettability produced on a silicon wafer by 5-min exposure

to diffusing vapor of decyltrichlorosilane. The open and closed circles

represent the advancing and receding contact angles of water. In the inset,

the method used to form gradients in surface tension is illustrated

schematically. The glass slide was initially silanized with

CI3Si(CH 2)2(CF2)CF3, which rendered it lipophobic. A small strip (3 mm wide) of

this slide was oxidized in plasma; this strip was used to contain the solution

of C13Si(CH 2 )9 CH3 . The solution of C13Si(CH 2)9 CH3 (30 ul of the slane

solution containing 75 pl cf silane per gram of paraffin oil) was placed within

this strip. A clean silicon wafer (12 mm by 40 mm) was placed at a distance of

2 mm from the edge of the silane solution. The gradient surface resulted from

the diffusion of the silane in the vapor phase and subsequent reaction with the

surface SiOH groups and adsorbed water on the silicon wafer. The whole

assembly was placed inside a polystyrene petri dish and coverej. The relative

humidity of the room was 40% during these experiments.
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Fig. 3. Uphill motion of a drop of water on a gradient surface. The gradient

surface was inclined by about 150 from the horizontal plane. The volume of the

drop was about I pl. The moving drop was photographed using an automatic camera

that exposed one frame every 0.4 s. The drop moved more rapidly on the initial

part of the gradient than on the final part.
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